
CSC 252: Computer Organization 
 Spring 2018: Lecture 18 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 4 is due soon
• Get your exam after the class
• Take a look at the Cache Problem Set

Carnegie Mellon

Announcement
• Programming Assignment 4 is due soon

• 11:59pm, Monday, April 2.
• Cache Problem Set

• No turn-in required. Solutions are released also
• Get a preview of final exam problems!!!

2

Due

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
1

N

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
1

N

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

2

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

2

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

3

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

3

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

4

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

4

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

Iteration A B C
1 512 1024 1
2 512 1024 0
3 512 1024 1
4 512 1024 0
Total 2048 4096 2

Matrix Multiplication Example

3

N

N NN

N

= x
N

4

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

A BC

Cache
Misses

Carnegie Mellon

NN

Matrix Multiplication Example

4

N NN

N

= x
A BC

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

1 2

3 4

Carnegie Mellon

NN

Matrix Multiplication Example

4

N NN

N

= x
A BC

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

1 2

3 4
A1 A2 A3

Carnegie Mellon

NN

Matrix Multiplication Example

4

N NN

N

= x
A BC

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

1 2

3 4
A1 A2 A3 B1

B2

B3

Carnegie Mellon

NN

Matrix Multiplication Example

4

N NN

N

= x
A BC

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

1 2

3 4
A1 A2 A3 B1

B2

B3

1 2

3 4 = A1 x B1 + A2 x B2 + A3 x B3

+	 …	 (512	 times)

Carnegie Mellon

NN

Matrix Multiplication Example

5

N NN

N

= x
A BC

Assume each matrix element is 8 bytes, cache line is 16 bytes, N = 1024

1 2

3 4
A1 A2 A3 B1

B2

B3

Block A B C
1 2 2 2
2 2 2 0
3 2 2 0
512 2 2 0
Total 1024 1024 2

Cache
Misses

Carnegie Mellon

Cache Summary
• Cache memories can have significant performance impact

• You can write your programs to exploit this!

• Focus on the inner loops, where bulk of computations and memory

accesses occur.
• Try to maximize spatial locality by reading data objects with

sequentially with stride 1.
• Try to maximize temporal locality by using a data object as often as

possible once it’s read from memory.

6

Carnegie Mellon

So Far in CSC252…

<startup>	
inst1	
inst2	
inst3	
…	
instn	
<shutdown>

• Processors do only one thing:

• From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
• This sequence is the CPU’s control flow (or flow of control)

7

Physical	 control	 flow

Time

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

8

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

8

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

• System needs mechanisms for “exceptional control flow”

8

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system

9

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms

• 1. Exceptions

• Change in control flow in response to a system event  

(i.e., change in system state)
• Implemented using combination of hardware and OS software	

9

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms

• 1. Exceptions

• Change in control flow in response to a system event  

(i.e., change in system state)
• Implemented using combination of hardware and OS software	

• Higher level mechanisms

• 2. Process context switch

• Implemented by OS software and hardware timer
• 3. Signals

• Implemented by OS software
• 4. Nonlocal jumps: setjmp() and longjmp()

• Implemented by C runtime library

9

Carnegie Mellon

Today
• Exceptions/Interrupts

• How Different Computer Components Communicate: Bus

10

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

Event	 I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

ExceptionEvent	 I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

Exception
Exception	 processing	
by	 exception	 handler	

Event	 I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

Exception
Exception	 processing	
by	 exception	 handler	

•	 Return	 to	 I_current	
•Return	 to	 I_next	
•Abort

Event	 I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)

• Kernel	 is	 the	 memory-‐resident	 part	 of	 the	 OS	
• Examples	 of	 events:	 Divide	 by	 0,	 arithmetic	 overflow,	 page	 fault,	 I/O	
request	 completes,	 typing	 Ctrl-‐C

11

User	 code Kernel	 code

Exception
Exception	 processing	
by	 exception	 handler	

•	 Return	 to	 I_current	
•Return	 to	 I_next	
•Abort

Event	 I_current
I_next

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

12

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

12

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

12

Carnegie Mellon

Interrupts in a Processor

13

Processor

Chipset
Bus

ke
yb

oa
rd

di
sk

ne
tw

or
k

Interrupt
Signal
Lines

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

14

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

14

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts

14

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program

14

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	 code

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	 code Kernel	 code

Exception:	 page	 fault
Copy	 page	 from	 disk	
to	 memory

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	 code Kernel	 code

Exception:	 page	 fault
Copy	 page	 from	 disk	
to	 memoryReturn	 and	

reexecute	 movl

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	 code Kernel	 code

Exception:	 page	 fault
Copy	 page	 from	 disk	
to	 memoryReturn	 and	

reexecute	 movl

movl

Carnegie Mellon

Fault Example: Protection Fault

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Carnegie Mellon

Fault Example: Protection Fault

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code

movl

Carnegie Mellon

Fault Example: Protection Fault

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault
movl

Carnegie Mellon

Fault Example: Protection Fault

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault

Detect	 invalid	 address
movl

Carnegie Mellon

Fault Example: Protection Fault

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault

Detect	 invalid	 address
movl

Signal	 process	
and	 abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault

Detect	 invalid	 address
movl

Signal	 process	
and	 abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault

Detect	 invalid	 address
movl

Signal	 process	
and	 abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts
• User process exits with “segmentation fault”

16

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	 code Kernel	 code

Exception:	 page	 fault

Detect	 invalid	 address
movl

Signal	 process	
and	 abort

Carnegie Mellon

Others’ Definitions
• The textbook’s definitions are not universally accepted

• Intel (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)

• Interrupt: An exception that comes from outside of the processor. There are two
kinds of exceptions: local and external. A local exception is generated from a
program. External exceptions are usually generated by external I/O devices and
received at exception pins.

• PowerPC Architecture

• Interrupts “allow the processor to change state as a result of external signals, errors, or

unusual conditions arising in the execution of instructions”
• PowerPC 604

• Everything is an exception
• Motorola 68K

• Everything is an exception
• VAX

• Interrupts: device, software, urgent
• Exceptions: faults, traps, aborts

17

Carnegie Mellon

When Do You Call the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (think of page fault)

•Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)
• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)
• Indicating a critical error has occurred, and that the system is

probably about to crash

18

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

19

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

19

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts
• Never returns to the program

19

Carnegie Mellon

Where to Find Exception Handlers?
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

20

0
1
2 ...

n-1

Exception	
Table

Code	 for	 	 	
exception	 handler	 0

Code	 for	 	
exception	 handler	 1

Code	 for	
exception	 handler	 2

Code	 for	 	
exception	 handler	 n-‐1

...

Exception	 	
numbers

Carnegie Mellon

Nested Exceptions
• One interrupt/exception occurs when another is already active

• Priority maintained

• Can fundamentally do it

• Subroutine calls within subroutine calls
• Handlers need to save appropriate state

21

Carnegie Mellon

Concurrent Interrupts
•More than one interrupts happen at the same time

• Pre-defined priority

• The chipset arbitrates which one to respond to first

22

Carnegie Mellon

Today
• Exceptions/Interrupts

• How Different Computer Components Communicate: Bus

23

Carnegie Mellon

What Is A Bus?

• Shared data transport
• Allows different devices in a computer to share data
• E.g., CPU reads data from memory; keyboard sends keystrokes

to the CPU, etc.

• Requires
• Address
• Data
• Control

• Traditionally parallel (multiple wires) but lately some
have become serial

• USB: Universal Serial Bus

24

Carnegie Mellon

A Simple Bus

25

Processor Memory Keyboard

Address Data
Control

Carnegie Mellon

Bus Characteristics

• Arbitration: decides who gets bus

• Central
• Distributed

• Transfer of data on bus

• Asynchronous: notify when you are done
• Synchronous: every transfer takes the same amount of time

• Bus tenure

• Pending
• Split transaction

26

Carnegie Mellon

Centrally Arbitrated

27

Processor Memory Keyboard

Priority
Arb Unit

Address Data
Control

Carnegie Mellon

• Downsides (when you have many devices)

• Time to collect info
• Decision time
• Transmit decision

Central Arbitration Example

28

Carnegie Mellon

• Each device decides on its own whether its allowed to
use the resource

• May have information from other devices

Distributed Arbitration

29

Carnegie Mellon

• Each device decides on its own whether its allowed to
use the resource

• May have information from other devices

• Potential problems?

• Collisions: Must have some way to detect and resolve collisions

Distributed Arbitration

29

Carnegie Mellon

• Each device decides on its own whether its allowed to
use the resource

• May have information from other devices

• Potential problems?

• Collisions: Must have some way to detect and resolve collisions

• Examples

• Dinner table
• Ethernet: Collision Sense Multiple Access (CSMA)

Distributed Arbitration

29

Carnegie Mellon

Synchronous Bus

• All transfers take the same amount of time

• If less time required, waste the time

• Bus cycle fixed

• Tend to be short buses (minimize clock time)

• Tend to be similar speed devices

30

Carnegie Mellon

Synchronous Bus

add data add data

• Example: Processor read data from memory

• Cycle 1: submit address
• Cycle 3: return data

31

Carnegie Mellon

Asynchronous

• Handshaking protocol

• Identify start and end of each phase of the bus protocol

• Not tied to a clock

• Can start/finish transactions at any time

32

Carnegie Mellon

The Handshake Protocol

Processor reading memory
Processor asserts ReadReq signal and sends the address over the shared bus:
1. Mem sees the Readreq, reads the address and sets Ack.
2. Processor sees the Ack line is set and releases the ReadReq and data lines.
3. Mem sees that ReadReq is low and drops Ack to acknowledge that.
4. Mem places the data on the data lines and raises DataRdy.
5. Processor sees DataRdy, reads the data from the bus and raises Ack.
6. Mem sees the Ack signal, drops DataRdy and releases the data lines.
7. Processor sees DataRdy go low, drops Ack which indicates that transmission is over.

33

DataRdy

Ack

Data

ReadReq 1
3

4

5
7

642 2 What is missing?

Proc

Mem

Carnegie Mellon

Bus Tenure: Pending vs. Split

• Pending:

• Hold onto resource until you’re done with sending both

address and data
• Other devices can’t use the bus during this time
• Wasteful, but simple

• Split:
• Allow other transfers to go when you’re not ready
• Send address, release the bus let others use, then send data

34

Carnegie Mellon

From buses to networks

• Buses are great, but:

• Signal integrity difficult with many “bus drops”
• Lowers speed

• Point-to-point connections offer highest speed, but:

• Too many end-points for everything to connect to everything

• Interconnection networks

• Take multiple hops to get from place to place (node to node)
• See next slide

• Can combine buses and various networks in a hierarchy

35

Carnegie Mellon

Interconnection network topologies

• Network topology = how nodes are connected to one
another

• Topology considerations:

• Diameter (maximum hops between any two nodes)
• Bi-section bandwidth (minimum BW between any two “halves”)
• “Embedding” / packaging
• Cost of links (some more expensive than others)
• Routability

36

Uni- and bi-
directional rings

2D mesh 2D torus “Folded” Clos 
a.k.a. fat tree

Direct Indirect

