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           Spring 2018: Lecture 18 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester

Action Items: 
• Programming Assignment 4 is due soon 
• Get your exam after the class 
• Take a look at the Cache Problem Set
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Announcement
• Programming Assignment 4 is due soon


• 11:59pm, Monday, April 2. 
• Cache Problem Set


• No turn-in required. Solutions are released also 
• Get a preview of final exam problems!!!
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Matrix Multiplication Example
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Cache Summary 
• Cache memories can have significant performance impact


• You can write your programs to exploit this!

• Focus on the inner loops, where bulk of computations and memory 

accesses occur.  
• Try to maximize spatial locality by reading data objects with 

sequentially with stride 1. 
• Try to maximize temporal locality by using a data object as often as 

possible once it’s read from memory. 
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So Far in CSC252…

<startup>	  
inst1	  
inst2	  
inst3	  
…	  
instn	  
<shutdown>

• Processors do only one thing:

• From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time 
• This sequence is the CPU’s control flow (or flow of control)

7

Physical	  control	  flow
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Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

8
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Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in 
system state 
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

8
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Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in 
system state 
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

• System needs mechanisms for “exceptional control flow”

8



Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system

9
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Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms


• 1. Exceptions 

• Change in control flow in response to a system event  

(i.e.,  change in system state) 
• Implemented using combination of hardware and OS software	

9



Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms


• 1. Exceptions 

• Change in control flow in response to a system event  

(i.e.,  change in system state) 
• Implemented using combination of hardware and OS software	

• Higher level mechanisms

• 2. Process context switch


• Implemented by OS software and hardware timer 
• 3. Signals


• Implemented by OS software  
• 4. Nonlocal jumps: setjmp() and longjmp()


• Implemented by C runtime library

9
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Today
• Exceptions/Interrupts

• How Different Computer Components Communicate: Bus

10
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Exceptions

• An exception is a transfer of control to the OS kernel in response 
to some event  (i.e., change in processor state)

• Kernel	  is	  the	  memory-‐resident	  part	  of	  the	  OS	  
• Examples	  of	  events:	  Divide	  by	  0,	  arithmetic	  overflow,	  page	  fault,	  I/O	  
request	  completes,	  typing	  Ctrl-‐C

11

User	  code Kernel	  code

I_current
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Exceptions

• An exception is a transfer of control to the OS kernel in response 
to some event  (i.e., change in processor state)

• Kernel	  is	  the	  memory-‐resident	  part	  of	  the	  OS	  
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User	  code Kernel	  code

Exception
Exception	  processing	  
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•	  Return	  to	  I_current	  
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•Abort

Event	   I_current
I_next



Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

12
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Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

•  I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

12
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Interrupts in a Processor
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program

14
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Fault Example: Page Fault
• User writes to memory location 
• That memory location is not found in memory  

because it is currently on disk 
• Trigger a Page Fault (recoverable), the exception handler loads the 

data from disk to memory (will discuss in detail later in the class)

15

 80483b7: c7 05 10 9d 04 08 0d  movl   $0xd,0x8049d10
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Fault Example: Page Fault
• User writes to memory location 
• That memory location is not found in memory  

because it is currently on disk 
• Trigger a Page Fault (recoverable), the exception handler loads the 
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Fault Example: Page Fault
• User writes to memory location 
• That memory location is not found in memory  

because it is currently on disk 
• Trigger a Page Fault (recoverable), the exception handler loads the 

data from disk to memory (will discuss in detail later in the class)
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User	  code Kernel	  code

Exception:	  page	  fault
Copy	  page	  from	  disk	  
to	  memoryReturn	  and	  
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Fault Example: Protection Fault
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Fault Example: Protection Fault
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Fault Example: Protection Fault
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Fault Example: Protection Fault
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is 

unrecoverable, so simply aborts
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is 

unrecoverable, so simply aborts
• User process exits with “segmentation fault”

16
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User	  code Kernel	  code

Exception:	  page	  fault
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movl
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Others’ Definitions
• The textbook’s definitions are not universally accepted

• Intel (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)


• Interrupt: An exception that comes from outside of the processor. There are two 
kinds of exceptions: local and external. A local exception is generated from a 
program. External exceptions are usually generated by external I/O devices and 
received at exception pins.  

• PowerPC Architecture

• Interrupts “allow the processor to change state as a result of external signals, errors, or 

unusual conditions arising in the execution of instructions” 
• PowerPC 604


• Everything is an exception 
• Motorola 68K


• Everything is an exception 
• VAX


• Interrupts: device, software, urgent 
• Exceptions: faults, traps, aborts

17
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When Do You Call the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue 

without resolving the exception (think of page fault)

•Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU) 
• Synchronous exceptions are usually unmaskable 

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI) 
• Indicating a critical error has occurred, and that the system is 

probably about to crash

18
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Where Do You Restart?
• Interrupts/Traps

19
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Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
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Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!

• Aborts
• Never returns to the program

19
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Where to Find Exception Handlers?
• Each type of event has a  

unique exception number k


• k = index into exception 
table


• Exception table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time exception k occurs

20
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2 ...
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Exception	  
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exception	  handler	  2

Code	  for	  	  
exception	  handler	  n-‐1

...

Exception	  	  
numbers
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Nested Exceptions
• One interrupt/exception occurs when another is already active

• Priority maintained


• Can fundamentally do it

• Subroutine calls within subroutine calls 
• Handlers need to save appropriate state

21
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Concurrent Interrupts
•More than one interrupts happen at the same time

• Pre-defined priority

• The chipset arbitrates which one to respond to first

22
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Today
• Exceptions/Interrupts

• How Different Computer Components Communicate: Bus

23
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What Is A Bus?

• Shared data transport
• Allows different devices in a computer to share data 
• E.g., CPU reads data from memory; keyboard sends keystrokes 

to the CPU, etc. 

• Requires
• Address 
• Data 
• Control 

• Traditionally parallel (multiple wires) but lately some 
have become serial

• USB: Universal Serial Bus

24
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A Simple Bus

25

Processor Memory Keyboard

Address Data
Control
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Bus Characteristics

• Arbitration: decides who gets bus

• Central 
• Distributed 

• Transfer of data on bus

• Asynchronous: notify when you are done 
• Synchronous: every transfer takes the same amount of time 

• Bus tenure

• Pending 
• Split transaction

26
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Centrally Arbitrated

27

Processor Memory Keyboard

Priority 
Arb Unit

Address Data
Control
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• Downsides (when you have many devices)

• Time to collect info 
• Decision time 
• Transmit decision

Central Arbitration Example

28
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• Each device decides on its own whether its allowed to 
use the resource

• May have information from other devices

Distributed Arbitration

29
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• Each device decides on its own whether its allowed to 
use the resource

• May have information from other devices

• Potential problems?

• Collisions: Must have some way to detect and resolve collisions 

Distributed Arbitration
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• Each device decides on its own whether its allowed to 
use the resource

• May have information from other devices

• Potential problems?

• Collisions: Must have some way to detect and resolve collisions 

• Examples

• Dinner table 
• Ethernet: Collision Sense Multiple Access (CSMA)

Distributed Arbitration

29



Carnegie Mellon

Synchronous Bus

• All transfers take the same amount of time

• If less time required, waste the time 

• Bus cycle fixed

• Tend to be short buses (minimize clock time)

• Tend to be similar speed devices

30
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Synchronous Bus

add data add data

• Example: Processor read data from memory

• Cycle 1: submit address 
• Cycle 3: return data

31
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Asynchronous

• Handshaking protocol

• Identify start and end of each phase of the bus protocol 

• Not tied to a clock

• Can start/finish transactions at any time

32
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The Handshake Protocol

Processor reading memory
Processor asserts ReadReq signal and sends the address over the shared bus:
1. Mem sees the Readreq, reads the address and sets Ack.
2. Processor sees the Ack line is set and releases the ReadReq and data lines.
3. Mem sees that ReadReq is low and drops Ack to acknowledge that.
4. Mem places the data on the data lines and raises DataRdy.
5. Processor sees DataRdy, reads the data from the bus and raises Ack.
6. Mem sees the Ack signal, drops DataRdy and releases the data lines.
7. Processor sees DataRdy go low, drops Ack which indicates that transmission is over.

33

DataRdy

Ack

Data

ReadReq 1
3

4

5
7

642 2 What is missing?

Proc

Mem
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Bus Tenure: Pending vs. Split

• Pending:

• Hold onto resource until you’re done with sending both 

address and data 
• Other devices can’t use the bus during this time 
• Wasteful, but simple 

• Split: 
• Allow other transfers to go when you’re not ready 
• Send address, release the bus let others use, then send data

34
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From buses to networks

• Buses are great, but:

• Signal integrity difficult with many “bus drops” 
• Lowers speed 

• Point-to-point connections offer highest speed, but:

• Too many end-points for everything to connect to everything 

• Interconnection networks

• Take multiple hops to get from place to place (node to node) 
• See next slide 

• Can combine buses and various networks in a hierarchy

35
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Interconnection network topologies

• Network topology = how nodes are connected to one 
another


• Topology considerations:

• Diameter (maximum hops between any two nodes) 
• Bi-section bandwidth (minimum BW between any two “halves”) 
• “Embedding” / packaging 
• Cost of links (some more expensive than others) 
• Routability

36

Uni-  and    bi-
directional rings

2D mesh 2D torus “Folded” Clos 
a.k.a. fat tree

Direct Indirect


