
Lab 8 (Binary Tree, HashMap, and Priority Queue)
CSC 172 (Data Structures and Algorithms)

Spring 2018
University of Rochester

Due Date: Sunday, April 08 @ 11:59 pm

Objectives

This lab is designed to give you a chance to play with Binary Trees, HashMap, and Priority Queues. Also, it
should aid you to get started with Project 3 if you have not done so yet.

Problem 1: Level-order printing

Assume the following BTNode class is given.

public class BTNode
{
int data;
BTNode left;
BTNode right;
// Add constructor and/or other methods if required
}

Implement a method that prints level-order traversal in a way that nodes of all levels are printed in separate lines.
Method signature:

void level_order_print(BTNode root);

1
/ \

2 3
/ \ \
4 5 6

Output for above tree should be
1
2 3
4 5 6

Problem 2: Reconstructing a Tree

Implement a method that reconstructs a tree from its inorder and preorder traversal (refer: Lecture on Binary
Tree Traversal)

Method signature:

BTNode reconstruct_tree(int[] inOrder, int[] preOrder);

While testing your code, you should perform in-order, pre-order, and level-order traversal on the resultant
tree to verify the result.

Lab 8 (Binary Tree, HashMap, and Priority Queue) Page 1 / 2



Problem 3: Word-count problem

In this problem, you will read each word in a text file and report the number of times each word has appeared in
the file. Instead of printing this information on the console, you will write the output to another file.

You must have to use HashMap to solve this problem.
To test your function, you should try the following steps:

First, download the tar files provided for Project 3 and extract the file. You will find a text file, ‘alice30.txt’ in the
extracted folder. Count the number of times each word has appeared in the file (assume, each word is separated
by whitespaces. To achieve this, read one line at a time and then split on "\\s+".). You do not need to ignore
cases (i.e., consider, Alice and alice as two different strings). A sample entry in the output file may look like:
Alice:221

Method signature:
void word_count(String inputFile, String outputFile);

Problem 4: Jesse’s cookies

Adapted from: https://www.hackerrank.com/challenges/jesse-and-cookies/problem
Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this,

Jesse repeatedly mixes two cookies with the least sweetness (sweetness is never negative). He creates a special
combined cookie with:

sweetness = 1* sweetness of Least sweet cookie + 2 * sweetness of 2nd least sweet cookie).
He repeats this procedure until all the cookies in his collection have a sweetness ≥ K.
Write a function Jesse_cookies() that takes an integer array containing the sweetness of original cookies and

a number K representing the minimum required sweetness. Return the number of operations (mixing) required
to give the cookies a desired sweetness. Return -1 if this is not possible.

Method signature:
int Jesse_cookies(int[] cookies, int k);

Submission

Save the four files as Lab8P1.java, Lab8P2.java, Lab8P3.java, and Lab8P4.java . Hand in these
four files and a README file at the appropriate location on the Blackboard system at learn.rochester.edu.
You should hand in a single zip (compressed archive) Lab8zip . The README file should state your and your
team member’s name and any other pertinent information.

Grading (100 pts)

Each problem is worth 25 points.

We will keep on updating this section to address your questions. Please check the lab description periodi-
cally.

• You must not submit any other files except the four stated.

• You must adhere to the naming of your classes and methods.

• Each file must contain a main() method that calls the respective method to test it’s functionality. We
may use cases to test your files though.

• For Problem 3, you can use [ˆa-zA-Z] for spliting, but it’s not a requirement. It’s fine if you keep
special characters as it is, i.e., Alice, Alice’s, Alices, are three different words.

• Once again, TAs may or may not use the same main method that you wrote.

Lab 8 (Binary Tree, HashMap, and Priority Queue) Page 2 / 2

https://www.hackerrank.com/challenges/jesse-and-cookies/problem
learn.rochester.edu

