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Abstract

OS resource management policies traditionally employ
buffering to “smooth out” fluctuations in resource demand.
By minimizing the length of idle periods and the level of
contention during non-idle periods, such smoothing tends
to maximize overall throughput and minimize the latency
of individual requests. For certain important devices, how-
ever (disks, network interfaces, or even computational ele-
ments), smoothing eliminates opportunities to save energy
using low-power modes. As devices with such modes pro-
liferate, and as energy efficiency becomes an increasingly
important design consideration, we argue that OS poli-
cies should be redesigned to increase burstiness for energy-
sensitive devices.

We are currently experimenting with techniques to in-
crease the disk access pattern burstiness of the Linux op-
erating system. Our results indicate that the deliberate cre-
ation of bursty activity can save up to 78.5% of the energy
consumed by a Hitachi DK23DA disk (in comparison with
current policies), while simultaneously decreasing the neg-
ative impact of disk congestion and spin-up latency on ap-
plication performance.

1. Introduction

Resource management is one of the key responsibilities
of an operating system: the traditional management policy
aims to share resources fairly among competing tasks in a
way that maximizes the twin goals of throughput and re-
sponsiveness. For continuously renewable resources such
as processor cycles and I/O bandwidth, the OS typically
addresses these goals by making the global access pattern
as smooth as possible. By spreading activity over time we
avoid wasting resources during idle periods, and minimize
the latency due to contention during active periods. Back-
ground computations, for example, are scheduled around
more interactive applications, and I/O bursts are spooled
through memory so they don’t hit the disk all at once.

Smoothness may also serve, in important cases, to min-
imize energy consumption. Processors such as the Trans-
meta Crusoe and the Intel StrongARM support frequency
and voltage scaling, allowing a clever scheduling algorithm
to save dynamic energy by “squeezing out the idle time” in
rate-based applications [28]. Such algorithms depend criti-
cally on the ability of the device (in this case the processor)
to operate fully in its lower power modes. They also lever-
age the superlinear relationship between power and voltage:
within typical operating ranges, an � % reduction in voltage
yields more than an � % reduction in power.

Many important devices, however, including hard disks,
network interfaces, and even DRAM chips, support non-
operational (standby) low-power modes. Requests can
be handled only in full-power (active) mode; the various
standby modes consume progressively less power, but take
increasing amounts of time, and often energy, to return to
active mode. Dropping into a standby mode makes sense
only when we can stay in that mode long enough for the en-
ergy saved to exceed the energy required to return to active
mode. Making efficient use of nonoperational low-power
modes is extremely important in the mobile computing area,
especially for resource-poor devices such as laptops and
PDAs. However, by spreading accesses over time, a smooth
access pattern may actually waste energy by eliminating op-
portunities to profit from low power modes. Specifically, in
the case of hard disks, conservative prefetching algorithms,
periodic update policies, and lack of coordination among
I/O requests lead to access patterns that prohibit the use of
a disk’s low power states during the execution of several
common applications.

To illustrate the effect of such kernel algorithms on en-
ergy consumption, consider the write behavior of a typical
interval periodic update policy [20], as found, for example,
in the Linux file system. Every 5 seconds, the Linux kup-
date daemon scans for dirty pages that are more than 30
seconds old, and writes them to the disk. As a result of
this policy, even during light write workloads the interval
between successive disk operations is seldom longer than 5
seconds—too short to allow a modern laptop disk to save
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Figure 1. Distribution of idle time intervals for
the Linux disk during a CD copy operation.
The vertical bar indicates the break-even time
of Hitachi DK23DA disk.

energy by spinning down the disk. Figure 1 shows the disk
idle times while copying a CD-ROM to disk. Almost no
idle time interval is longer than five seconds, and the disk
remains constantly active. This is unfortunate given that the
sustainable bandwidth of the disk significantly exceeds that
of the CD drive.

A similar problem arises in light read workloads. For
sequential read accesses, Linux supports a conservative
prefetching algorithm that reads up to 128 KB (32 4KB
pages) in advance. For several common applications, such
as MP3 playback and encoding, compression, and data
copying, the 128 KB prefetching depth is not large enough
to yield idle intervals above the disk break-even time. Fig-
ure 2 illustrates disk behavior for MP3 playback. The appli-
cation consumes file data sequentially at a rate of approxi-
mately 16 KB/s (1MB/min), which the kernel translates into
read requests for 128KB approximately every 8 seconds—
still too short to justify a spin-down. In our experiment 66%
of the total disk idle time (194 seconds out of 292) appears
in intervals of less than 8 seconds, and only 6% appears
in intervals that are larger than 16 seconds (the break-even
time for a Hitachi DK23DA disk model1).

When multiple applications are executing concurrently,
the fact that requests are not coordinated among applica-
tions means that we may not be able to use a low disk power
mode even when each individual application has long peri-
ods of idle time. In addition, because of the conservative
prefetching policy, increasing the system’s memory does
not improve the hard disk’s energy consumption.

The goal of our work is to develop operating system

1Break-even time has been computed using the power consumption of
the low power idle mode (Table 1).
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Figure 2. Distribution of idle time intervals for
the Linux disk during MP3 playback.

mechanisms that increase the burstiness of disk access pat-
terns. Toward this end we have modified the memory man-
agement and file system of the Linux 2.4.20 kernel. We ex-
tend the Linux operating system with novel algorithms and
data structures that allow us to:

� Quickly identify the working set of the executing
workload and dynamically control the amount of mem-
ory used for aggressive prefetching and buffering of
dirty data.

� Coordinate the generation of disk requests among mul-
tiple concurrently running applications, so that they are
serviced by the hard disk during the same small win-
dow of time.

The rest of this paper is structured as follows. Sec-
tions 2 and 3 describe the design of our prefetching and
request deferring mechanisms. Section 4 presents experi-
mental results. Section 5 discusses previous work. Sec-
tion 6 summarizes our conclusions and directions for future
work.

2. Design Guidelines

Modern hard disks for mobile systems support four dif-
ferent power states: Active, Idle, Standby, and Sleep. In the
Idle state the disk is still spinning, but the electronics may
be partially unpowered, and the heads may be parked or un-
loaded. In the Standby state the disk is spun down. The
Sleep state powers off all remaining electronics; a hard re-
set is required to return to higher states. Individual devices
may support additional states. The IBM TravelStar, for ex-
ample, has three different Idle sub-states. Table 1 presents
the power characteristics for four recent hard disks. Note



that the IBM Microdrive and the Toshiba MK5002 are one-
inch devices intended for use in cameras and PDAs.

Contemporary disks require on the order of one to three
seconds to transition from Standby to Active state. During
that spin-up time they consume 1.5–2X as much power as
they do when Active. The typical laptop disk must there-
fore remain in Standby state for a certain amount of time
to justify the energy cost of the subsequent spin-up. This
break-even time is currently on the order of 5–20 seconds
for laptop disks. The time and energy required to move
from Idle to Active state are minimal for most devices, lead-
ing to a relatively short breakeven time (usually less than 3
seconds). In addition, the energy savings in the intermedi-
ate idle states are comparable to those of the standby state,
making the idle low power mode an excellent alternative
when disk idle periods are not large enough to justify a spin-
down. However, none of the low power states may be used
if the time between requests is very small.

The principal task of an energy-conscious buffer man-
agement policy is to extend the length of disk idle phases
and force transitions to Standby state when this is likely
to save significant energy. Inappropriate mode transitions
can waste energy (if the disk remains idle for less than the
break-even time), frustrate the human user (if the computer
must frequently spin up the disk in order to service an inter-
active application), and possibly reduce the lifetime of the
disk through wear and tear. On the other hand, even sig-
nificant amounts of unnecessary disk traffic (e.g. prefetch-
ing of data that are never actually used) can be justified if
they allow us to reduce the frequency of mode transitions
or leave the disk in a low power mode for longer periods
of time. Our goals are thus to (1) maximize the length of
idle phases by prefetching aggressively and by postponing
write requests, (2) coordinate I/O across applications, and
(3) maintain interactive responsiveness through disk pre-
activation.

2.1. Maximizing Idle Phases

Burstiness arises when we take accesses to an under-
loaded device and move them together in time. Some cases
are easy: requests from non-interactive applications can be
delayed for significant periods of time, though we need to
be careful to maintain the fairness of long-term scheduling.
Asynchronous requests can be similarly delayed, though for
interactive applications we should generally aim to com-
plete requests before the program waits for I/O completion.
Upper levels of the I/O system will need to preserve suf-
ficient information for lower levels to distinguish between
urgent requests (those that might cause an interactive appli-
cation to block) and delayable, non-urgent requests.

We can increase burstiness even for synchronous re-
quests from interactive applications via aggressive prefetch-

ing and buffering (write-behind). Write-behind is relatively
straightforward: it requires no prediction, and is limited
only by the available buffer space and reliability considera-
tions.

Prefetching for burstiness, on the other hand, is quite
a bit more subtle. In comparison to traditional prefetch-
ing, which aims to reduce the latency of access to disks in
active mode, a bursty prefetch algorithm must be signifi-
cantly more aggressive in both quantity and coverage. A
traditional prefetching algorithm can fetch data incremen-
tally: its goal is simply to request each block far enough
in advance that it will already be available when the ap-
plication needs it. It will improve performance whenever
its “true positives” (prefetched blocks that turn out to in-
deed be needed) is reasonably high, and its “false positives”
(prefetched blocks that aren’t needed after all) don’t get in
the way of fetching the “false negatives”. By contrast, an
energy-reducing prefetching algorithm must fetch enough
blocks to satisfy all read requests during a lengthy idle inter-
val. Minimizing “false negatives” has an increased impor-
tance compared to traditional prefetching, since the energy
cost and performance penalty of power mode transitions is
very high. These differences suggest the need to fetch much
more data, and much more speculatively, than has tradition-
ally been the case. Indeed, prefetching for burstiness more
closely resembles prefetching for disconnected operation in
remote file systems [14] than it does prefetching for low la-
tency.

Currently, we do not have a complete solution that solves
the problem of accurate file prediction. However, we be-
lieve that efficient file prediction may be achieved by moni-
toring past file accesses of applications and taking advan-
tage of the semantic locality that appears in user behav-
ior [16]. Upon initiation of the execution of an application
its working set of files can be loaded into memory. An alter-
native method is to aggressively load into memory all small
files found in the working directory of the application. Fur-
thermore, keeping track of accesses to code pages with file
accesses can improve prefetching in cases, such as scene
and sound effect loading during game playing.

2.2. Coordinating across applications

Idle interval length can be limited because of a lack of
coordination among requests generated by different appli-
cations. Write activity can be easily clustered because most
write requests are issued by a single entity: the update dae-
mon. Similarly, page-out requests are issued by the swap
daemon. Read and prefetching requests, however, are gen-
erated within a process context independently of other ap-
plications. To coordinate prefetching requests across all
running applications we introduce a centralized entity that is
responsible for generating prefetching requests for all run-



Table 1. Energy consumption parameters for various disks. The power savings compared to the
active state are shown in parenthesis for each low power mode. The characteristics of the IBM and
Toshiba disks come from their respective data sheets, while those of the Hitachi disk have been
computed through experimental measurements.

Disk Hitachi IBM Toshiba IBM
DK23DA TravelStar MK5002 MPL Microdrive DSCM

Capacity 10-30GB 6-18GB 2GB 340MB-1GB
Active 2.1W 2.1W 1.3W 0.73W

Idle 1.6W (24%) 1.85W (12%) 0.7W (46%) 0.5W (31%)
Active Idle NA 0.85W (59%) NA NA

Low Power Idle 0.6W (71%) 0.65W (69%) 0.5W (62%) 0.22W (70%)
Standby 0.15W (93%) 0.25W (88%) 0.23W (82%) 0.066W (91%)
Spin up 3.0W 3.33W 3.0W 0.66W

Spin up time 1.6s 1.8s 1.2s 0.5s

ning applications: the prefetch daemon. The prefetch dae-
mon is equivalent to the update daemon and handles read
activity. Through the prefetch thread the problem of coor-
dinating I/O activity is reduced to that of coordinating three
daemons.

Fundamental in achieving a bursty access pattern is a
memory management system capable of coordinating re-
quests generated by various system components (applica-
tions and kernel daemons) and reordering them with a goal
to maximize the average length of idle intervals for devices
supporting low power modes. The methods for reorder-
ing requests, aggressive prefetching and delayed-writes, in-
crease significantly the memory pressure. Hence, prefetch-
ing aggressiveness and write delays should be controlled
in a way that do not lead to increased paging or thrashing,
evicting data that could be used earlier in time.

2.3. Maintaining responsiveness

For mobile systems, whose workloads are not usually
I/O intensive, the principal downside to a bursty access pat-
tern is a potential increase in the application-perceived la-
tency of synchronous reads, due to spin-up operations. For
interactive applications aggressive prefetching serves to re-
duce the number of visible delays. For rate-based and non-
interactive applications, the same information that allows
the operating system to identify opportunities for spin-down
can also be used to predict appropriate times for spin-up,
rendering the device available just in time to service re-
quests. It can also be used to deactivate the disk after the
end of a burst of activity.

For more I/O intensive workloads, burstiness can lead to
increased latency due to congestion. This negative effect
of burstiness was noted in the past for file systems using the
30 second periodic update policy, such as the Sprite file sys-

tem [2]. In our current prototype, we keep track of pending
I/O requests and initiate prefetching for each application in
advance so that the time required for a request to wait in the
disk queue is hidden.

In order to mitigate the impact of possible disk conges-
tion on unpredicted cache misses, we introduce a notion of
urgency and use it to order requests. The general idea is that
requests for data that are going to be used earlier in time or
requests that are important for system reliability should be
serviced first. Urgency-based scheduling and request criti-
cality have also been discussed in previous work [9] in the
context of read latency reduction.

3. Prototype

The key idea behind our energy efficient prefetching and
caching mechanism is the introduction of an Epoch-based
algorithm in the basic memory management mechanisms
of the Linux kernel. Each epoch consists of two phases:
a request generation phase and an idle phase. During the
request generation phase the operating system attempts to
load into memory data that are going to be accessed in the
near future. In order to achieve its goal the following tasks
have to be completed:

1. Flush all dirty buffers.

2. Predict future data accesses. Prediction is based on
access hints [23], which increase the overall prediction
rate.

3. Compute the amount of memory that can be used for
prefetching or storing new data. This step requires
identifying quickly the currently useful in-memory
data: the workload’s working set and cached files.



4. Free the required amount of memory by unmapping
pages and flushing dirty, mapped pages.

5. Prefetch or reserve buffers for writing new data pro-
portionally to each executing application’s data con-
sumption or production rate. The goal of this step is to
maximize the time to the next demand miss.

When the request generation phase completes, the idle
phase of the epoch is initiated. During the idle phase, the
data production and consumption rates of each application
are monitored and, based on this information, a prediction
about the time of the next request is made. If the time to the
next request is predicted to be higher than the disk’s break-
even time, an early disk spin-down decision is made.

The start of a new epoch is triggered by one of the fol-
lowing events:

1. A new prefetching cycle has to be initiated.

2. A demand miss took place. In this case the prefetch-
ing algorithm has failed to load into memory all re-
quired data, and the application that issued the request
may experience an increased delay if the disk has been
placed into low power mode.

3. One or more dirty buffers have expired and it is time
for them to be flushed.

4. The system is low on memory resources. The page
freeing logic has to be executed.

3.1. The Prefetch Cache

We have augmented the kernel’s page cache with a new
data structure: the prefetch cache. Pages requested by the
prefetch daemon are placed in the prefetch cache. Each
page in the prefetch cache is associated with a timestamp
that describes the time that it is expected to be accessed.
Pages that get referenced or pages that do not get referenced
before their expected access time are moved to the standard
LRU list and thereafter are controlled by the kernel’s page
reclamation policy.

Intuitively, two parameters determine the number of
pages that should be freed at the beginning of each epoch.
First, the reserved amount of memory should be large
enough to contain all predicted data accesses. Second,
prefetching or future writes should not cause the eviction
of pages that are going to be accessed sooner than the
prefetched data. Since our goal is to maximize the length
of the hard disk’s idle periods, we use the type of the first
miss during an epoch’s idle phase to determine the size of
the prefetch cache.

We categorize page cache misses as follows:

1. Compulsory miss: A miss on a page for which there is
no prior information.

2. Prefetch miss: A miss on a page for which there was
a prediction that it was going to be accessed. Such a
miss suggests that a larger prefetch cache size could
have been used during the current epoch.

3. Eviction miss: A miss on a page that used to reside in
the page cache, but was evicted in favor of prefetching.
Such a miss suggests that the prefetch cache used in the
current epoch was too large.

In order to identify eviction misses, we have imple-
mented a new data structure, called the eviction cache. The
eviction cache maintains the metadata of recently evicted
pages along with a unique serial number, called the eviction
number. The serial number serves the purpose of keeping
track of the number of pages that were evicted during the
request generation phase of an epoch in favor of prefetch-
ing. During the idle phase, if an eviction miss takes place,
the difference between the page’s eviction number and the
current epoch’s starting eviction number provides an esti-
mation of a suitable size for the prefetch cache in number of
pages, and is used as the prefetch cache size for the upcom-
ing epoch. The prefetch cache size does not change in the
case of misses on pages that were evicted in past epochs,
and it is increased by a certain constant if there were no
misses, or there were only prefetch misses.

3.2. Update Policy

In our current implementation, we use a modified update
daemon that flushes all dirty buffers once per minute. In
addition, we have extended the open system call with an
additional flag that indicates that write-behind of the dirty
buffers belonging to a certain file can be postponed until the
file is closed. Such a direction is useful for several com-
mon applications, such as compilations and MP3 encoding,
that produce files that are not associated with strict relia-
bility constraints. For such applications write-back can be
delayed until the whole operation (eg. copying of a file or
MP3 encoding of a CD track) has completed.

4. Experimental Evaluation

In this section, we compare our energy-conscious
(Bursty) memory/disk management policy, which attempts
to increase the burstiness of the disk’s usage pattern through
aggressive prefetching, to the standard Linux policies across
systems with memory sizes ranging from 64MB to 492MB.
The Linux kernel’s update policy has been modified to flush
all dirty buffers once per minute, since the original update
daemon that flushes buffers every five seconds prohibits the



use of low power modes. The Bursty system takes advan-
tage of the fact that data produced by the applications in our
experiments are not associated with strict reliability con-
straints2. Hence, the time that write requests can be delayed
is limited only by the amount of available memory. Dirty
buffers are always flushed when a file is closed.

We assume a 10 second fixed threshold power manage-
ment policy for the Linux kernel. However, the Linux mem-
ory management algorithms lead to very short periods of
disk idle time, and hence, such a policy degenerates to the
No-Spin-Down policy. Our kernel’s power management
policy is based on a predictive algorithm that monitors the
I/O behavior of each running application and spins down
the disk immediately when the predicted idle phase length is
greater than the disk’s break-even time. Our goal is to show
how usage pattern re-shaping can lead to increased energy
savings by providing longer intervals of disk idle time.

Our experiments were conducted on a Dell Inspiron
4100 laptop with 512 MB of total memory and a Hitachi
DK23DA hard disk. Power measurements were collected
from the two 5V supply lines of the Hitachi disk. To
measure power, both the voltage and current need to be
known. The voltage is assumed to be fixed at 5V. We used�������
	

resistors in order to dynamically measure the cur-
rent through the supply lines. A voltmeter was used to mea-
sure the voltage drop across the resistors and compute the
current. The sampling rate for each signal was 1000 sam-
ples/second.

The idle interval histogram graphs (figures 3 and 4) are
based on traces collected from the ATA/IDE disk driver
during the execution of our workloads scenarios. In order
to avoid any disk activity caused by the tracing system, a
pinned-down 20MB memory buffer that was periodically
transmitted to a logging system through the network was
used.

In the experimental evaluation we use two different
workload scenarios with different degrees of I/O intensity.
The first, MPEG playback of two 76 MB files, represents a
relatively intensive read workload. The second is a read and
write intensive workload, which involves concurrent MP3
encoding and MPEG playback. The MP3 encoder reads 10
WAV files with a total size of 626 MB and produces 42.9
MB of data. During the MP3 encoding process, the MPEG
player accesses two files with a total size of 152 MB.

The metrics used in the comparisons are:

Length of idle periods Longer idle periods can be ex-
ploited by more power efficient device states. Increas-
ing the length of idle periods can improve any under-
lying power management policy.

Energy savings We compare the energy savings achieved

2The written data can be reproduced again automatically in case of a
system crash for all the applications tested.
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Figure 3. Cumulative distribution of disk idle
time intervals during MPEG playback.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

Pe
rc

en
ta

ge
 o

f 
T

ot
al

 I
dl

e 
T

im
e

Idle Interval Length (seconds)

Bursty-64
Bursty-128

Bursty-256
Bursty-492

Figure 4. Distribution of disk idle time inter-
vals during concurrent MPEG playback and
MP3 encoding.

for Linux and our Bursty system for various memory
sizes.

Slowdown A significant challenge for our Bursty memory
management system is to minimize the performance
penalties that may be caused by increased disk con-
gestion and disk spin-up operations.

Figures 3-4 show the distribution of idle time intervals
for our workload scenarios. We present results for our
Bursty system using various memory sizes. In both graphs
the straight vertical line represents the 16 second break-even
point of the Hitachi hard disk. In the Linux case (not shown
in the graphs), 100% of the disk idle time appears in in-
tervals of less than 1 second, independent of memory size,
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Figure 5. Disk energy savings as a function of
total memory size. Results are shown for the
two experimental workloads (MPEG and Com-
bined) executing on the standard Linux kernel
(Linux) and our bursty system (Bursty).

prohibiting the use of any low power mode. In contrast,
larger memory sizes lead to longer idle interval lengths for
the Bursty system, providing more opportunities for the disk
to transition to a low power mode.

Figure 5 presents disk energy savings as a function of
total system memory size. The base case used for the com-
parisons is the standard Linux kernel on a 64MB system.
For Linux, increasing the system’s memory size has a mi-
nor impact on the energy consumed by the disk, because
of the lack of long idle intervals. Strangely, in the second
more intensive workload (Linux-Combined) a memory size
of 492 MB leads to a slight increase of 3.6% in disk en-
ergy consumption. In contrast, the savings achieved by the
Bursty algorithm depend on the amount of available mem-
ory. For the less intensive workload, significant energy sav-
ings are achieved for all memory sizes. Even on the 64
MB system, the energy consumed by the disk is reduced
by 40.3%. Despite the fact that most disk idle intervals are
not long enough to justify a spin-down operation, they al-
low the disk to make an efficient use of the low-power idle
state that consumes just 0.6 Watts. On the 492 MB sys-
tem, the Bursty system loads the required data in just three
very intensive I/O operations, allowing the disk to transition
and remain in the spin-down state for significant periods of
time, and leading to 78.5% disk energy savings. The results
of the second workload are similar. However, because of
the increased I/O intensity the energy savings are less pro-
nounced. Energy consumption is reduced after the memory
size exceeds 128 MB (15.9% energy savings). On a system
with 492 MB energy savings reach 62.5%.

Figure 6 presents snapshots of the hard disk’s power con-

sumption during the execution of MPEG playback. For the
Linux kernel we show results only for the 492 MB memory
system (top), since in all cases the disk is constantly in the
active or the first idle state (1.6 W). For Bursty, we present
results for the 64 MB (middle) and 128 MB (bottom) cases.
As memory size increases, the hard disk spends more time
in the low-power idle or the spin-down state. The spikes
in the middle and bottom graphs represent power-up and
power-down operations. The power consumption behavior
is similar for the second workload (not shown due to space
limitations). During execution on the Linux kernel, the disk
remains constantly in the active or the first idle state. The
Bursty system manages to make more efficient use of the
disk’s low power modes as memory size increases. How-
ever, since the second workload is more intensive, efficient
use of the low power modes starts at larger memory sizes
(256 MB).

Figure 7 presents the total execution time for the two
workload scenarios. For the first workload (left side of
the graph) the Bursty system experiences a slowdown of
1% (for the 64 MB case) or less, when compared to Linux
with 492 MB of memory (L-492). For the second workload
(right side of the graph), the slowdown of the MP3 encod-
ing process is 2.8% or less. The performance of the MPEG
player stays within 1.6% of that on the Linux system in all
cases except the 64 MB system (B-64), where it experiences
a slowdown of 4.8%. Our performance results show that the
prefetching algorithm manages to avoid successfully most
of the delay that may be caused by disk spin-up operations
or disk congestion.

5 Related Work

Power Management. The research community has been
very active in the area of power-conscious systems during
the last few years. Ellis et al. [6] emphasized the impor-
tance of energy efficiency as a primary metric in the de-
sign of operating systems. ECOSystem [30] provides a
model for accounting and fairly allocating the available en-
ergy among competing applications according to user pref-
erences. Odyssey [8, 21] provides operating system support
for application-aware resource management. The key idea
is to trade quality for resource availability.

Several policies for decreasing the power consumption
of processors that support dynamic voltage and frequency
scaling have been proposed. The key idea is to schedule
so as to “squeeze out the idle time” in rate-based appli-
cations. Several researchers have proposed voltage sched-
ulers for general purpose systems [7, 11, 28, 24]. Lebeck
et al. [17] explore power-aware page allocation in order to
make a more efficient use of memory chips supporting mul-
tiple power states, such as the Rambus DRAM chips.

Hard Disks. The energy efficiency of hard disks is not
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Figure 6. Snapshot of the hard disk’s power
profile during the execution of the MPEG
player on Linux with 492MB (top), Bursty with
64MB (middle), and Bursty with 128MB (bot-
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a new topic. The cost and risks of standby mode played a
factor in the early investigation of hard-disk spin-down poli-
cies [4, 5, 13, 18]. Concurrently with our own work [22],
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Figure 7. Execution time of the first workload
scenario when ran on Linux (L) and Bursty
(B) for various system memory sizes.

several groups have begun to investigate the deliberate gen-
eration of bursty access patterns. Heath et al. [12] and Weis-
sel et al. [29] propose user-level mechanisms to increase
the burstiness of I/O requests from individual applications.
Lu et al. [19] report that significant energy can be saved
by respecting the relationship between processes and de-
vices in the CPU scheduling algorithm. (We note, however,
that given the many-second “break-even” times for hard
disks, process scheduling can increase burstiness only for
non-interactive applications, which can tolerate very long
quanta.) Zeng et al. [31] propose “shaping” the disk access
pattern as part of a larger effort to make energy a first-class
resource in the eyes of the operating system.

Like Lu et al. and Zeng et al., we believe that the effec-
tive management of devices with standby modes requires
global knowledge, and must be implemented, at least in
part, by the operating system. Our work differs from that
of Lu et al. by focusing on aggressive read-ahead and write-
behind policies that can lead to bursty device-level access
patterns even for interactive applications. Our work is more
similar to that of Zeng et al., but without the notion of en-
ergy as a first-class resource. While we agree that energy
awareness should be integrated into all aspects of the op-
erating system, it is not clear to us that it makes sense to
allocate joules to processes in the same way we allocate cy-
cles or bytes. Rather than say “I’d like to devote 20% of my
battery life to MP3 playback and 40% to emacs,” we sus-
pect that users in an energy-constrained environment will
say “I’d like to extend my battery life as long as possible
without suffering more than a 20% drop in sound quality
or interactive responsiveness.” It will then be the respon-



sibility of the operating system to manage energy across
applications to meet these quality-of-service constraints.

Prefetching. Prefetching has been suggested by sev-
eral researchers as a method to decrease application per-
ceived delays caused by the storage subsystem. Previous
work has suggested the use of hints as a method to increase
prefetching aggressiveness for workloads consisting of both
single [23] and multiple applications [27]. Cao et al. [1]
propose a two-level page replacement scheme that allows
applications to control their own cache replacement, while
the kernel controls the allocation of cache space among pro-
cesses. Curewitz et al. [3] explore data compression tech-
niques in order to increase the amount of prefetched data.
In the best of our knowledge, previously proposed prefetch-
ing algorithms do not address improved energy efficiency.
In general, they assume a non-congested disk subsystem,
and they allow prefetching to proceed in a conservative way
resulting in a relatively smooth disk usage pattern.

6. Conclusion

In our study we investigated the potential benefits of in-
creasing the burstiness of disk usage patterns in order to
improve the energy efficiency of the disk power manage-
ment policy. We suggested the use of aggressive prefetch-
ing and the postponement of non-urgent requests in order to
increase the average length of idle phases. In addition, we
presented a method to coordinate accesses of several con-
currently executing tasks competing for limited memory re-
sources so that requests are generated and arrive at the disk
at roughly the same time. We have implemented the pro-
posed ideas in the Linux kernel 2.4.20. Our experiments
with streaming applications show that our techniques can
increase the length of idle phases significantly compared to
a standard Linux kernel leading to disk energy savings of
up to 78.5%. The savings depend on the amount of avail-
able memory, and increase as the system’s memory size in-
creases. Our future work will focus on workloads that in-
clude applications with random access patterns. Such ap-
plications will require highly speculative prefetching algo-
rithms similar to those used for prefetching for disconnected
operation in remote file systems [14]. Although we may not
see energy reduction at the order of 78.5% for such appli-
cations, we believe that even relatively short increases in
the average idle interval length can lead to significant en-
ergy savings — mostly by making more efficient use of the
intermediate low power states.

Despite of the fact that our current work has focused on
hard disks, in principle increased burstiness can be used to
improve the energy efficiency of other devices with non-
operational low power modes. Network interfaces—for
wireless networks in particular—are an obvious example,
but they introduce new complications. First, in addition to

standby modes, several wireless interfaces support multi-
ple active modes, with varying levels of broadcast power
suitable for communication over varying distances. The
energy consumed by a wireless interface also depends on
the quality of the channel, so communication bursts should
be scheduled, when possible, during periods of high chan-
nel quality. Gitzenis et al. [10] consider the benefits of
such scheduling under the assumption of a perfect predic-
tor. We believe that our work will complement theirs nicely
for wireless remote file access. For more general network
traffic, we will need to develop techniques that increase the
burstiness of browsers, streaming protocols, P2P searches,
and other applications. We envision application-specific
mechanisms that track past behavior and pass predictions
to an OS daemon, which can in turn use global knowledge
to shape the traffic pattern. Efficiently using the low power
modes of wireless devices and the additional complication
of accommodating externally initiated traffic will have a
significant impact on the design of transport and physical
layer protocols [15, 26]. An additional example arises in the
case of Rambus DRAM memory chips. By consecutively
scheduling processes, whose current working set resides on
the same memory chip, one can increase the burstiness of
accesses on a certain chip, and the idle intervals for the re-
maining chips. Such considerations affect the design of the
processor scheduling and page placement algorithms [17].

Over time, we speculate that burstiness may become im-
portant in the processor domain as well. In a processor
with multiple clock domains, for example [25], one can
save dynamic power in a floating-point application by slow-
ing down the (lightly-used) integer unit. Alternatively, by
scheduling instructions for burstiness, one might save both
dynamic and static power by gating off voltage to the inte-
ger unit during periods of inactivity.

Moreover, interdependencies among the components
of a system should be taken into account when making
scheduling and power management decisions. As an ex-
ample, consider the case of an application transferring data
over a slow wireless link to local storage (hard disk). On a
traditional operating system, such an operation would prob-
ably result in a constantly active disk that spends most of
its idle time waiting for data from the network link. How-
ever, buffering an increased amount of data through mem-
ory would provide longer disk idle periods that could be
used for reducing energy consumption. Similar dependen-
cies exist among all components of a computing system.

Finally, in a wide-open field of research, mobile wire-
less systems raise the possibility of enhancing perfor-
mance, saving energy, or both, by off-loading compu-
tation to nearby servers. We plan to pursue this pos-
sibility in the context of work on intuitive computing
(www.cs.rochester.edu/research/intuitive/), and to explore
its implications for devices with standby modes.
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